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1 Introduction and motivation

1.1 Introduction to Topological Data Analysis and Persis-
tent Homology

1.1.1 Topological Data Analysis

Topological data analysis (TDA) is, as its name says, the analysis of data
with the help of the abstract notions of closeness and connectivity of topology.
Homeomorphisms are an important part of topology, they describe whether
the fundamental features of two different spaces are the same. If we think of
the classical description of a homeomorphism forming a cup into a donut, one
could suppose that holes form an important part in describing the topology of
a space. And this is exactly what Homology does, homology groups describe
the holes of different dimensions of a space. Homology uses algebraic methods
in order to extract topological characteristics of a space. There is even a
connection between homeomorphisms and homology groups. Homeomorphic
topological spaces have isomorphic homology groups.

1.1.2 Persistent Homology

The challenge of extracting the essential shape of a discrete set of points
is often addressed in the field of Topological Data Analysis. Persistent
Homology analyses the topological features of spaces induced by discrete
sets of data points. For doing so it makes use of a combination of sequences
and homology. Persistent homology makes it possible to extract whether an
extracted feature of a topological space (for example a hole) is "robust"by for
example using different distance functions for computing the shape of this
space. Small irregularities in scientific datasets are often seen as "noise", many
times they do not deliver useful information about the data. Nevertheless, the
decision of whether extracted information is "noise"or essential information
depends on the point of view of the data scientist and the source of the data.
Persistent homology is able to define precisely how big the irregularity of a
shape is; thus, it makes it easy to detect "noise". This ability of persistent
homology of extracting substantial information of data without scaling it
makes it useful to be used before using other analytic methods.
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1.1.3 A brief history of Persistent Homology

Persistent homology was invented independently from each other in the last
fifteen years of the past century by researchers in Bologna, Duke University
(North Carolina) and Boulder University in Colorado. I can highly recom-
mend the book "Computational Topology, An Introduction"[3] by Professors
Edelsbrunner and Harer for interested students that want to acquire addi-
tional knowledge in this field, both of them researched at Duke University at
the time Persistent homology arose. I used it for writing chapter 2 of my
thesis. In the survey of N. Otter [8] you can find useful information about
which software tools to use for computing persistent homology.

[4], [3], [5], [7], [6]

1.2 Motivation for finding representatives of holes

In a discretized topological space, holes are represented by equivalence classes
of cycles. The algorithm of detecting holes does not detect explicit cycles
that represent the hole. It defines a hole be expressing how "big"it is. In
most cases, this special feature of knowing explicit cycles that represent holes
is not needed as persistent homology tries to capture the robust shape of a
space and not independent cycles. Nevertheless, there exist examples where
the knowledge of single representatives of holes is requested. Cardiac image
analysis tries to reconstruct trabeculae, tissue elements, traditional image
segmentation methods are not capable of capturing their delicate surface
precisely enough. Without going into details, the best way to reconstruct an
image of those trabeculae is to use optimal loops representing a hole. [9]

I focused on this exact topic: Given information about a hole, I want
to extract a single loop that represents it. I circumscribed the topic of my
thesis to the case of 1-cycles and holes of dimension 1, thus, cycles the way
we imagine them and "2D"holes. The algorithm turns the problem of finding
a representative loop into the problem computing the shortest path between
two discrete points. This exact topic has also been treated by researchers
all over the united states in the past year. Except for the introduction, the
article [9] they published has not been taken into account in this document
though.

I want to thank Morten Brun for being an excellent supervisor. Moreover,
I want to thank Francisco Gomez for receiving me at the National University
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(a) (b)

(c)

Figure 1: Caption(a) shows the segmentation result of trabeculae with
traditional image processing methods and not using topological data

analysis. In figure (b) topological data analysis was used before and for
optimizing the image processing methods that followed. In caption (c) we
see the improvement of the image provided persistent homology and the

knowledge of the optimal cycles representing holes. [9]

of Colombia, for introducing me to topological data analysis and for explaining
me the main construct of the algorithm that I am going to provide. This
thesis is dedicated to my family and friends, and to Mao.

2 The theory behind persistent homology

2.1 Simplicial Complexes

2.1.1 Simplices

Most definitions and theorems are taken out of the great book "Computational
Topology: An Introduction" by Professors Edelsbrunner and Harer from
Duke University [3].

Definition 2.1. Let x1, x2, . . . , xk be elements of Rn and let λ1, λ2, . . . , λk

be in R. Moreover, we require that the sum of all λi is 1. We call the sum∑k
j=1 λj · xj an affine combination of the points x1, x2, . . . , xk.

Definition 2.2. Let x1, x2, . . . , xk be points in Rn. We call the set of all
their affine combinations their affine hull.
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Definition 2.3. Let λj and µj be elements of R for j = 1, ..., k. We call the
points x1, x2, . . . , xk ∈ Rn affinely independent iff two points

∑k
j=1 λj · xj

and
∑k

j=1 µj · xj in Rn are the same iff all the coefficients accord with each
other, thus λj = µj for j = 1, . . . , n.

Definition 2.4. Let
∑k

j=1 λjxj be an affine combination. Iff the coefficients
λ1, λ2, . . . , λk are greater than zero, we call it a convex combination.

Definition 2.5. Let x1, x2, . . . , xk be in Rn. We call the set of all convex
combinations of x1, x2, . . . , xk their convex hull.

A simplex is the generalization of a line segment, a triangle, a tetrahedron
and so forth:

Definition 2.6. Let x1, x2, . . . , xk+1 be in affinely independent points in Rn.
A k-simplex or simplex of dimension k σ is the convex hull of x1, x2, . . . , xk+1.
We say the xi span σ and we denote σ as

σ = [x1, x2, . . . , xk+1].

Definition 2.7. We call a 0-simplex vertex, an 1-simplex edge, a 2-simplex
triangle, a 3-simplex tetrahedron.

Remark 2.8. If we take a subset of affinely independent points in Rn, then it
is again affinely independent, thus, it defines a simplex aswell.

Definition 2.9. Let x1, x2, . . . , xn+1 be a set of affinely independent points
that span an n-simplex σ. We take a subset consisting of k + 1 elements of
these points. The k-simplex spanned by that subset is called a k-face of σ.
If k is strictly smaller than n, then we call the face a proper face of σ.

Remark 2.10. Let τ be a (proper) face of a simplex σ. We write τ ≤ σ

(τ < σ).

Definition 2.11. We call the union of all proper faces of a simplex its
boundary. We write bd σ. Moreover, we call σ \ (bd σ) the interior of the
simplex.

Remark 2.12. Let the points x1, x2, . . . , xk ∈ Rn be affinely independent,
x a point in the simplex σ spanned by x1, x2, . . . , xk. Furthermore, let∑k

j=1 λj ·xj = x be its representation as a linear combination of x1, x2, . . . , xk.
Then, x belongs to the boundary bd σ of σ iff one of the λis is zero.
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2.1.2 Simplicial Complexes

Later on, we will use simplices for describing closeness of the vertices. We
will now introduce a set that allows us to unite simplices in a practical way:
faces of simplices are always contained in the set. This means that if three
vertices are close, two of them are close too.

Definition 2.13. We define a simplicial complex as a set of simplices with
the following properties:
The intersection of two simlices is either empty or a face of both of them.
All the faces of a simplex in the simplicial complex are included in the
simplicial complex aswell.

Definition 2.14. We call the maximum of the dimensions of the simplices
included in a simplicial complex K its dimension.

Definition 2.15. A simplicial complex that is a subset of another simplicial
complex K is called a subcomplex of K.

Theorem 2.16. Let K be a simplicial complex, L ⊂ K a subset. Then L is
a subcomplex of K iff any face τ of a simplex in L is again in K.

Later on, we will see that taking only the vertices and edges of a simplicial
complex we get a graph. We will generalise this idea of extracting simplicies
with dimension smaller than some threshold.

Definition 2.17. We define the i-skeleton K(i) of a simplicial complex K
as the union of all simplices of a dimension that is lower than i.

Now we define something similar to the "social network" of a simplex:

Definition 2.18. Let K be a simplicial complex, σ a simplex in K. We
define the star St(σ) ⊆ K of σ as the subset of K containing all simplices
that have σ as a face.

This we need for later. If we not only take out a simplex of a simplicial
complex but also all the simplices including it, we prevent the remaining
complex from losing the property of containing all faces of simplices.

Theorem 2.19. Let K be a simplicial complex, τ a simplex in K. Then the
complement K \ St(τ) of the star of τ in K is a subcomplex of K.
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Proof. We have to show that any face of a simplex in St(τ) is an element
of St(τ). Suppose that there is a simplex ε in K \ St(τ), whose face σ has
been deleted. Then σ has τ as a face. But then also ε has τ as a face, and ε
is not an element of St(τ), a contradiction.

Definition 2.20. We take the union of the simplices of a simplicial complex
K which is a subspace of Rn. The subspace topology of this union inherited
from Rn is called the underlying space.

2.1.3 Abstract simplicial complexes

In this section we will note that we can express simplicial complexes with
nothing more than subsets of the set of vertices that span the complex, a
very practical characteristic that allows us to express closeness in a simple
way, similar to topologies.

Definition 2.21. We define an abstract simplicial complex A as a collection
of sets which is closed under the operation of taking subsets: If α ∈ A and
β ⊆ α, then β ∈ A.

Definition 2.22. We call those sets that are elements of an abstract simpli-
cial complex simplices.

Definition 2.23. We define the dimension of a simplex α as the cardinality
of the simplex subtracted by one: dimα = |α| − 1. The dimension of an
abstract simplicial complex is the maximum dimension of its simplices.

Definition 2.24. A nonempty subset of a simplex is a face, a proper subset
is called a proper face.

Definition 2.25. A vertex is an element of a simplex. The vertex set of an
abstract simplicial complex is the union of all its simplices.

Definition 2.26. Two abstract simplicial complexes are called isomorphic
if there exists a bijection between their vertex sets.

A maximal simplicial complex is a complex where all the vertices are
close and everything is connected.

Definition 2.27. One can construct an abstract simplicial complex of a set
of vertices V by taking the powerset of V . We call it the maximal simplicial
complex of V .
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Definition 2.28. We take a simplicial complex K, we can construct its
abstract equivalent A by putting the vertices that span its faces into sets,
ergo by making "abstract" faces out of them. A is called the vertex scheme
of K.

Definition 2.29. The geometric equivalent of an abstract simplicial complex
is called its geometric realization.

This theorem tells us that we can see simplicial complexes and abstract
simplicial complexes as the same:

Theorem 2.30 (Geometric Realization Theorem). There exists a geometric
realization in R2d+1 for any abstract simplicial complex of dimension d.

2.2 The Vietoris-Rips-Complex

Definition 2.31. Let S be a subset of a metric space (X, d). Then the
diameter diamS is the supremum of all the distances between the elements
in S: diamS := sup{d(x, y) : x, y ∈ S}.

Definition 2.32. Let S be a finite subset of a metric space (X, d), r ∈ R+.
We call the set {σ ⊆ S | diam(σ) ≤ 2r} the Vietoris-Rips complex Rips(S, r)
of S and radius r.

Theorem 2.33. The Vietoris-Rips complex of a set S is indeed an abstract
simplicial complex.

Proof. Let V be the Vietoris-Rips complex of a set of points S. To prove
that V is an abstract simplicial complex we first must prove that it is closed
under the operation of taking subsets. Let σ be a simplex in V . Then
diam(σ) ≤ 2r. For any face ρ of σ holds: diam(ρ) ≤ diam(σ). Therefore, ρ
is an element of V .

Remark 2.34. Let S be a set of points. Then the Vietoris-Rips complex
Vietoris-Rips(0, S) of S is S itself.

Remark 2.35. Let S be a set of points. Then the complex Vietoris-Rips(r1, S)
is a subcomplex of Vietoris-Rips(r2, S) iff r1 ≤ r2.

Remark 2.36. The set of vertices S of a Vietoris-Rips complex V := Vietoris-
Rips(r, S) is always a subset of V .
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2.3 The Chain Group

Definition 2.37. Let K be a simplicial and let A be a ring, ai elements in
A and σi p-simplices in K. A formal sum

∑
aiσi is called a p-chain.

Remark 2.38. Computational topology mostly uses Z2 as the ring that
provides the coefficients. So do we.

Definition 2.39. Let x =
∑
aiσi and y =

∑
biσi be two p-chains of a

simlicial complex. We define the addition on x and y as follows:

x+ y =
∑

(ai + bi)σi.

Remark 2.40. When writing a chain
∑
aiσi, we only have two coefficients 0

and 1, ai = 0 or ai = 1. For being gentle to our eyes, we simply don’t write
the simplices with coefficient zero. Moreover, we define the zero-chain as
0 =

∑
0 · σi.

Remark 2.41. Note that the addition ai + bi is mod 2, therefore, if we take
the same simplex σ twice we get σ + σ = 0.

Theorem 2.42. Let p be a dimension. The p-chains of a simplicial complex
together with the previously defined addition form an abelian group (Cp,+).

Proof. Firstly, we will show that the addition + is an operation. For two
elements x =

∑
aiσi and y =

∑
biσi in Cp their sum x+ y =

∑
(ai + bi)σi is

clearly an element of Cp. Secondly, we want to proove the associativiy of the
addition. Let x =

∑
aiσi, y =

∑
biσi and z =

∑
ciσi be in Cp. Then

(x+ y) + z =
∑

(ai + bi)σi +
∑

ciσi

=
∑

(ai + bi + ci)σi =
∑

aiσi +
∑

(bi + ci)σi

= x+ (y + z)

Thirdly, we need to show that there exists an identity element. We will do
so with the element 0 that we defined before as 0 =

∑
0 · σi. Let x be an

element of Cp. 0 + x =
∑

(0 + ai)σi =
∑
aiσi = x. The other way round

we get x + 0 = 0. Moreover, we need to show that there exists an inverse
element for every element of Cp. Clearly, every element itself is its inverse.
And, for coming to an end, Cp is abelian because Z2 is abelian:

x+ y =
∑

(ai + bi)σi =
∑

(bi + ai)σi = y + x.
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Definition 2.43. Let K be a simplicial complex. The group (Cp,+) is
called the group of p-chains or the p-th chain group. Denote Cp = Cp(K).

Remark 2.44. Let d be the dimension of a simplicial complex. For all integers
p with 0 ≤ p ≤ d there exists a group of p-chains.

Definition 2.45. We call the formal sum of all p− 1-faces of a p-simplex
σ its boundary ∂pσ. Or, more formally: Let v1, v2, . . . , vp+1 be the points
that span σ. Denote [v1, v2, . . . , v̂i, . . . , vp+1] as the simplex spanned by the
points v1, v2, . . . , vi−1, vi+1, . . . , vp+1. Then we can write the boundary of σ
as ∂pσ =

∑p+1
i=1 [v1, v2, . . . , v̂i, . . . , vp+1].

Definition 2.46. We define the boundary ∂pc of a p-chain c =
∑
aiσi as the

boundary of the simplices that create it: ∂pσ =
∑
ai∂pσi.

Definition 2.47. The function c 7→ ∂pc that assigns any p-chain c its
boundary is called the boundary operator.

Remark 2.48. Let K be a simplicial complex. The boundary operator ∂p

is a function with the group of p-chains as a domain and the group of
(p− 1)-chains as a codomain: ∂p : Cp → Cp−1.

Remark 2.49. For convenience we will often not write the index of the
boundary operator.

Theorem 2.50. The boundary operator is a homomorphism.

Proof. Let c =
∑
aiσi and d =

∑
biσi be p-chains. Then

∂p(c+ d) = ∂p(
∑

aiσi +
∑

biσi) = ∂p(
∑

(ai + bi)σi)

=
∑

(ai + bi)∂pσi =
∑

ai∂pσi +
∑

bi∂pσi

= ∂p(
∑

aiσi) + ∂p(
∑

biσi) = ∂pc+ ∂pd

.

Definition 2.51. The boundary operator is also called the boundary homo-
morphism.

Definition 2.52. The sequence . . . ∂p+2−−−→ Cp+ 1 ∂p+1−−−→ Cp
∂p−→ Cp− 1 . . .

of chain groups constructed by the boundary operator is called the chain
complex.
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2.4 Cycles and boundaries

If we walk along a cycle, there is no starting and no ending point, thus, there
is no boundary:

Definition 2.53. We call a p-chain whose boundary is 0 a p-cycle.

Theorem 2.54. The set Zp of all the p-cycles of a group of p-chains forms
an abelian subgroup.

Proof. The elements of Zp are the ones with empty boundary (the ones
that have 0 as a boundary). Therefore, they are exactly the kernel of the
boundary homomorphism ∂p. Due to that, Zp is a subgroup of Cp. It is
abelian because the group of p-chains it lives in is abelian.

Definition 2.55. Let K be a simplicial complex. We call Zp = Zp(K) the
group of p-cycles.

Remark 2.56. Zp is abelian because its superset Cp is.

Vertices always work a little different than the rest of the simplicies. As
we cannot form circles jumping just from one vertex to another, being a
cycle and not being one is the same in the space of only points:

Remark 2.57. The group of 0-chains is the same as the group of 0-cycles of a
simplicial complex.

Now, what is the difference between being a cycle and being a boundary?
There must exist some chain whose boundary you are:

Definition 2.58. We call a p-chain a p-boundary if it is an element of the
image of the boundary operator ∂p+1. Sometimes we omit the p.

The properties of Bp and Zp being subgroups will allow us to work with
quotient spaces later on.

Theorem 2.59. The subset Bp of a chain group Cp consisting of all the
boundaries in Cp is an abelian subgroup.

Proof. Let c and d be two elements in Bp. Being an element of Bp means
being the image of some element in Cp+1: ∂p+1c̃ = c and ∂p+1d̃ = d. But the
boundary operator is a homomorphism, therefore we can write ∂(c̃+ d̃) =
∂c̃ + ∂d̃ = c + d. Thus, c + d is an element of Bp. Finally, Bp is abelian
because its superset Zp is.
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Definition 2.60. Let K be a simplicial complex. We call Bp = Bp(K) the
group of p-boundaries.

Theorem 2.61. Let K be a subcomplex of L, then the p-th boundary group
of K is a subset of the p-th boundary group of L for p ≤ dim(L).

Proof. Let ∂σ ∈ K be a boundary of a simplex σ ∈ K, then both, σ and its
boundary are in L.

Theorem 2.62 (Fundamental Lemma of Homology). Let c be a p+ 1-chain.
The boundary ∂p∂p+1c of the boundary of c is always empty.

Remark 2.63. The group of p-boundaries is a subgroup of the p-cycles,
Bp ⊆ Zp.

Theorem 2.64. Let S be a set of points in a metric space (X, d) and let
v1, v2, . . . , vn be elements of S, n ≥ 2. Let K be a Vietoris Rips complex,
K :=Vietoris-Rips(r, S). Let c =

∑p
i=1[v1, v2, . . . , v̂i, . . . , vn], where v̂i de-

notes a missing vertex vi, be an element of the chain group Cp(K). Then the
p− 1-simplex σ := [v1, v2, . . . , vp], whose boundary is c, is an element of K.

Proof. As c is an element of Cp(K), all the summands τi := [v1, v2, . . . , v̂i, . . . , vn]
of c are elements of K. Now let’s look at the construction of the Vietoris
Rips complex K. The τi are in K because their diameter is less than r. The
union of τi and τj gives σ for i 6= j. Now we know that the distances between
all pairs of vertices in σ except d(vi, vj) are less than r. As the number of
τis is bigger than two, looking closely at τk, k 6= i and k 6= j, we realize that
d(vi, vj) is also less than r. Therefore, the diameter of σ is less than r and σ
is an element of K.

Definition 2.65. We call the quotient space Zp�Bp
of the group of p-cycles

modulo group of the p-boundaries the p-th homology group Hp. Moreover,
we call the rank of Hp the pth Betti number βp, βp = |Hp|.

And now we get to the abstract description of what we consider a hole.

Definition 2.66. An element of Zp�Bp
is called a homology class. A ho-

mology class is said to be trivial if it is homologous to the zero element of
Hp.

Thus a hole can be described by different cycles.
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Definition 2.67. Any two cycles c and d that are in the same homology
group are homologous, write c ∼ d. We write the homology group that c
belongs in as c := c+Bp and call c a representative of c.

Remark 2.68. The homology group Hp is abelian because the group of cycles
Zp is.

2.5 Filtrations

In this chapter we describe how different simplicial complexes can be con-
nected, we will remain with a increasing (in terms of taking supersets)
sequence of subcomplexes. The Vietoris-Rips complex is a good example to
explain this procedure: by incresing the radius between the points we turn
into simplices, we create a sequence of subcomplexes.

Definition 2.69. A function f : K → R with a simplicial complex K as a
domain and an image in R is said to be monotonic if the image of a face τ
of a simplex σ is less or equal than the image of σ: f(τ) ≤ f(σ).

Definition 2.70. Let Y be a metric space, f : X → Y a function. Further-
more, let c be in Y . We call the set {x ∈ X : f(x) ≤ c} of all elements in X
whose image is smaller than c a sublevel set of f . Similar to that, we call
the set {x ∈ X : f(x) ≥ c} of all elements in X whose image is greater than
c a superlevel set of f .

Theorem 2.71. Let f : K → R be a monotonic function with a simplicial
complex K as a domain. The sublevel set K(a) := f−1(−∞, a] is a subcomplex
of K for all a in R.

Proof. We have to show that K(a) is a simplicial complex. Let σ be a
simplex in K(a). We want to show that any face µ of σ is an element of
K(a). The image f(σ) of σ is smaller than a, but as f is monotonic, the
image f(µ) of µ is smaller than f(σ). Therefore it is in K(a).

Definition 2.72. Let K be a simplicial complex with m simplices, f : K →
R monotonic. Let A := {a1, a2, . . . , am} be the set of images f(σ) of the
simplices σ in K, n ≤ m. Choose a subset of A, order them and rename
them to end up with a1 < a2 < · · · < an for n ≤ m. Define a0 := −∞. By
successively computing the sublevel set Ki := K(ai) of f, we get a sequence

∅ := K0 ⊂ K1 ⊂ · · · ⊂ Kn =: K,

12



where Ki is a strict subset of Ki+1, called filtration of f , of simplicial
subcomplexes of K.

Remark 2.73. Let K0 ⊆ K1 ⊆ · · · ⊆ Km be a filtration of a simplicial complex
K. Elements Ki, i < m do not necessarily contain all vertices of K.

Proof. Let us look at the simplicial complex K := {{v1}, {v2}}. Define the
monotonic function f : K → R by f(v1) := 1 and f(v2) := 2. Thus, ai = i,
and the two different filtrations we can get are: K0 ⊆ K1 = {{v1}} ⊆ K2 = K

and K0 ⊆ K1 = K.

The Vietoris-Rips filtration is, amongst others, one of the most common
ways to express closeness with simplices:

Theorem 2.74. Let S be a finite subset of a metric space. For every r ∈ R+

compute the Vietoris-Rips complex Rips(S, r) (definition 2.32). Define K as
the maximal complex of S (definition 2.27). Moreover, define f : K → R+

as:

f(σ) :=
{

min{r ∈ R+ : σ ∈ Rips(S, r)}, for σ /∈ S
0, for σ ∈ S

}

Then f is a monotonic function.

Definition 2.75. Let S be a finite subset of a metric space. We call the
filtration of the function f defined in the above theorem (theorem 2.74) the
Rips-filtration Rips(S) of S.

As intuitively the distance of a point to itself is zero, we want the data
points themselves to be in the filtration from the beginning on:

Remark 2.76. Let K0 ⊂ K1 ⊂ · · · ⊂ Kn be a Rips-filtration of a set S. Then
K1 is equal to S.

Proof. Vietoris-Rips(S, 0) = S (remark 2.34). The codomain of f is a
subset of R+ and its smallest value is 0 = a1 (definition 2.72). Thus,
K1 = f−1(−∞, 0] = S.

2.6 Birth and death of homology classes

As the notion of closeness increases in a filtration, new simplices appear in
later elements of the sequence of complexes, we need an expression to say
that a chain appears:
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Definition 2.77. Let K0 ⊂ K1 ⊂ · · · ⊂ Kn be a filtration of a simplicial
complex. A chain c in Cp(Kj) is said to be born in Cp(Kj), if it is not an
element of Cp(Ki) for i < j.

We also want to speak about the notion of a hole being born, and in the
case of holes, about death.

Theorem 2.78. Let Ki and Kj be elements of a filtration K, i ≤ j. The
map f i,j

p : Hp(Ki) → Hp(Kj) defined by c + Bp(Ki) 7→ c + Bp(Kj) is a
homomorphism.

Proof. As Ki is a subset of Kj , the chain c ∈ Ki is an element of Kj and
f i,j

p (c+Bp(Ki)) = c+Bp(Kj) is clearly an element of Hp(Kj). Moreover,

f i,j
p [(c+Bp(Ki)) + (d+Bp(Ki))] = f i,j

p [(c+ d) +Bp(Ki)] =

(c+ d) +Bp(Kj) = (c+Bp(Kj)) + (d+Bp(Kj))

.

Remark 2.79. By applying f i,i+1
p successively to Hp(Ki), we get the sequence

∅ =: Hp(K0) ⊂ Hp(K1) ⊆ · · · ⊆ Hp(Kn) = Hp(K)

of the homology groups connected by homomorphisms.

Definition 2.80. Let K0 ⊆ K1 ⊆ · · · ⊆ Kn be a filtration. Let f i,j
p be the

homomorphism between the homology groups. We call its image

H i,j
p := imf i,j

p ⊆ Hp(Kj)

the p-th persistent homology group for 0 ≤ i ≤ j ≤ n.

Remark 2.81. Note that H i,i
p = imf i,i

p is the same as Hp(Ki).

The elements of the p-th persistent homology group H i,j
p are the homology

classes of Ki that still exist at Kj we want to proove the existence of an
isomorphism that is a demostrative representation of what H i,j

p looks like.

Lemma 2.82. The kernel of f i,j
p is of the form

ker f i,j
p = Bp(Kj) ∩ Zp(Ki)�Bp(Ki)

14



Proof. The image of a class in Hp(Ki) is trivial iff its representant is a
boundary in Zp(Kj).

Theorem 2.83. H i,j
p is isomorphic to Zp(Ki)�(Bp(Kj) ∩ Zp(Ki)).

Proof. f i,j
p is a homomorphism. Its domain isHp(Ki). The First isomorphism

theorem states that

Im f i,j
p
∼= Hp(Ki)�ker f i,j

p
.

Hp(Ki) = Zp(Ki)�Bp(Ki) and kerf i,j
p = Bp(Kj) ∩ Zp(Ki)�Bp(Ki).

Now, Zp(Ki) is abelian, so, Bp(Ki) and Bj
p ∩ Zi

p are normal subgroups of
Zp(Ki). Applying the Third isomorphism theorem, we get, that

Im f i,j
p
∼= Zp(Ki)�(Bp(Kj) ∩ Zp(Ki)).

Definition 2.84. A class γ in Hp(Ki) is said to be born in Ki if it is not
an element of H i−1,i

p :

γ ∈ Hp(Ki) and γ /∈ H i−1,i
p .

We also say that γ is born at (time) ai.
Moreover, the class γ born in Ki is said to die entering Kj if

f i,j−1
p (γ) /∈ H i−1,j−1

p but f i,j
p (γ) ∈ H i−1,j

p ,

which means that γ becomes part of an older class in the transition from
Kj−1 to Kj . We also say that γ dies at (time) ai. Figure 2.

Definition 2.85. The persistence p(γ) of a homology class γ born in Ki

and dying entering Kj is the difference between the function values ai and
aj : p(γ) = aj − ai.

Definition 2.86. We define µi,j
p as the number of homology classes of

dimension p born in Ki and dying entering Kj .
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Figure 2: γ is born in Ki and it dies entering Kj . The red fields represent
the images of f i−1,i

k , f i−1,j−1
k ,f i−1,j

k .

Definition 2.87. We call a collection of objects in which elements can occur
many times a multiset. The times an element occurs in a multiset is called
its multiplicity.

Definition 2.88. Let f : K → R be monotonic. The p-th persistence
diagram of the filtration of is the diagram that includes the function values
ai and aj of f as points (ai, aj) and µi,j

p as their multiplicity for any p. We
denote this diagram as Dgmp(f).

Definition 2.89. We call the interval (ai, aj) that defines the time of birth
and death of a homology class its persistence interval / betti interval.

Remark 2.90. We do not distinguish between homology classes that have the
same persistence interval.

Theorem 2.91. Let f : K → R be monotonic, Ki and Kj elements of the
filtration of f . Moreover, let µi,j

p be the number of classes of dimension p

that are born in Ki and die entering Kj. Then we can express µi,j
p with the

p-th persistent betti numbers:

µi,j
p = (βi,j−1

p − βi,j
p )− (βi−1,j−1

p − βi−1,j
p )

for all p and all i < j.

Proof. βi,j−1
p describes the number of homology classes that are born before

or at Ki and that die entering Kk for j − 1 ≤ k. The classes included in
βi,j

p are also born before or in Ki and they die entering Kk for j ≤ k. The
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substraction βi,j−1
p − βi,j

p counts the homology classes that are born before
or in Ki and die entering Kj . Likewise does the βi−1,j−1

p − βi−1,j
p count the

homology classes that are born before or in Ki and die entering Kj .

3 Finding the responsible simplices for a hole

Finally we reached the chapter of exploring the question which is the headline
of this article: As we are working with the betti numbers for aquiring
knowledge about the holes of a space, we loose track of the circles that
actually represent these holes. In some sence, we want to pass through
the whole process that we described in all the previous chapters backwards
now: Taking a hole defined by its persistence interval (ai, aj) (remark 2.90,
definition 2.89), can we find a cycle living in the birthplace Ki of γ and
representing γ? We will circumscribe our topic to the case of one-dimensional
holes, so the "2D"holes. And yes, we can, in most cases. We proceed in two
steps: First, we find an edge born in Ki that is a summand of a cycle in
C1(Ki) that represents γ (definition 2.67). After that, we "delete"e from Ki.
we percieve the edges of this new complex as edges between the vertices of a
graph and we compute the shortest path s ∈ C1(Ki) between the two faces
of e (as e is not an element of the new complex, the shorest path cannot be
e). Finally, the sum s+ e represents γ.

3.1 Finding the responsible edge

Now, we consider the following task: Take a Rips-filtration

K0 ⊂ K1 ⊂ · · · ⊂ Km

of a set of points. Suppose, that we were given a homology class γ defined
by its persistence interval (ai, aj). We want to find the last edge e missing
in order to create the first cycle(s) that represent γ. The edge e is clearly
born in Ki. It is computationally easy to find all the edges born in Ki (with
the help of a distance matrix). It is a little harder to find out which edge is
the edge we are looking for. Our approach to finding e is deleting one by
one every edge born in Ki from Ki and checking wheather γ is born at the
same time as it did before. If we delete one edge and ai, the birth time of γ,
does not change, the edge we are looking for is not e. Then we continue by
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adding the edge again and subtracting a different edge born in Ki. When ai

finally changes, we must have found e.
If we delete an edge e of a simplicial complex Ki, we have to make sure

that it is still a simplicial complex. Therefore, we will also delete all the
simplices which have e as a face (theorem 2.19). Usually, that shouldn’t be
many, because e was born in Ki, so all the simplices which have it as a face
must have been born in the exact same moment. First, we will make sure,
that the new complex Ki− 1

2
is not a subset of an earlier complex Ki−1:

Lemma 3.1. Let K0 ⊂ K1 ⊂ · · · ⊂ Km be a Rips-filtration of a finite subset
of a metric space. Suppose that the edge e is born in Ki. Construct a new
simplicial subcomplex Ki− 1

2
:= Ki\St(e) by taking the difference of Ki and

the star St(e) ⊆ Ki of e (this is possible due to theorem 2.19). Then

Ki−1 ⊆ Ki− 1
2
⊂ Ki.

Proof. We want to show, that Ki−1 is a proper subset of Ki− 1
2
. The edge

e is born in Ki, and it is a face of all the other simplices in St(e). If any
simplex of St(e) was an element of Ki−1, then e would have to be in there
too, because it is a face. But that is not the case, therefore Ki−1 ⊆ Ki− 1

2
.

Ki− 1
2
is clearly a subset of Ki. And because St(e) persists of at least e, it

has to be a proper subset.

Secondly, we define a new filtration that includes Ki− 1
2
, the complex of

which we deleted e. For doing this, we have to define a suitable monotonic
function.

Theorem 3.2. Take the Rips filtration K0 ⊂ K1 ⊂ · · · ⊂ Km of a set of
vertices with the corresponding monotonic function f : Km → R (definition
def:RipsFiltration). Let e be an edge born in Ki. Moreover, let Ki−1 6=
Ki\St(e). Denote the images of f as

f(Ki\Ki−1) = ri, 1 < i ≤ m.

Define an ri− 1
2
such that

ri−1 < ri− 1
2
< ri.

Furthermore, define a function f*: Km → R by changing the function values
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of f of elements in St(e).:

f*(σ) =

 ri+ 1
2
, for σ ∈ St(e)

f(σ), for σ /∈ St(e)


Then f* is a monotonic function.

Definition 3.3. We call the filtration

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Ki ⊂ · · · ⊂ Km

defined by the function f* described in the previous theorem the Rips*
filtration of V and e.

Remark 3.4. We will denote the Rips* filtration

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Ki ⊂ · · · ⊂ Km

as

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Kĩ ⊂ · · · ⊂ Km

from now on, in order to avoid confusions with the "normal"Rips-filtration

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki ⊂ · · · ⊂ Km.

Now, we define the subset of H1(Kĩ) of holes that have e as a summand
in all the cycles that represent it. We need this definition, because edges
with this property are the ones we can detect.

Definition 3.5. Let K0 ⊂ K1 ⊂ · · · ⊂ Km be a Rips filtration of a set of
vertices and e1. Let e1, e2, . . . , en be all edges contained in Ki. We call the
subset of H1(Kĩ) of all the homology classes of dimension one born in Ki and
dying in Kj for which all representatives contain e1 as a summand H i,j

1 (e1):

∑
aiei ∈ H i,j

1 (e)⇒ a1 6= 0.

Moreover, we call the subset of H1(Kĩ) of all the homology classes of dimen-
sion one born in Ki for which all representatives contain e1 as a summand
H i

1(e1)
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The following remark will help us for using the previous definition better.
It only says, that homology classes that have an edge e as summand in all
their representative cycles can’t be born before e, thus, Kĩ

Remark 3.6. Let

K0 ⊂ K1 ⊂ · · · ⊂ Km

be a Rips filtration of a set V and let

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Kĩ ⊂ · · · ⊂ Km

be a Rips* filtration of an edge e and V . There exists no homology class
that is an element of H i,j

1 (e) for some j and element of a younger homology
group than H1(Kĩ) (a younger homology group is the homology group of a
proper subcomplex of Kĩ, so for example of Ki− 1

2
)).

Proof. By the definition of the Rips* filtration, the statement follows.

Lemma 3.7. Let K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Kĩ ⊂ · · · ⊂ Km be a

Rips* filtration of a set of vertices and e. Then,

H i
1(e) = H1(Kĩ) \H

i− 1
2 ,̃i.

Proof. By remark 3.6, H i
1(e) is a subset of H1(Kĩ).

First, we will show, that H i
1(e) is a subset of H1(Kĩ) \H i− 1

2 ,̃i.
Suppose now, thatH i

1(e) is not a subset ofH1(Kĩ)\H i− 1
2 ,̃i. Then, there exists

an element γ in H i
1(e) ⊆ H1(Kĩ), which is not an element of H1(Kĩ) \H i− 1

2 ,̃i.
Now, γ is an element of H i− 1

2 ,̃i
1 , which means, that it is an element of

H1(Ki− 1
2
), a contradiction to remark 3.6.

Thus, H i
1(e) ⊆ H1(Kĩ) \H i− 1

2 ,̃i.
Now, we will show, that H1(Kĩ) \H i− 1

2 ,̃i is a subset of H i
1(e).

Suppose, that H i
1(e) ⊂ H1(Kĩ) \H i− 1

2 ,̃i. Then, there exists a homology class
γ in H1(Kĩ) \ H i− 1

2 ,̃i that is not an element of H i
1(e). The edge e is the

only one born in Kĩ. Thus, it must be summand of all the first cycles that
represents γ. This is a contradiction to the fact that γ is not an element of
H i

1(e).
So, H1(Kĩ) \H i− 1

2 ,̃i ⊆ H i
1(e).
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Theorem 3.8. The number of holes in H i
1(e) is equal to the number of holes

born in Kĩ.

Proof. See the previous lemma.

Lemma 3.9. The number of holes of dimension one born in Kĩ and dying
in Kj is equal to µi,j

1 − µ
i− 1

2 ,j
1 .

Proof. The holes born in Kĩ are and dying in Kj are the ones that are born
in Ki and die in Kj and that are not born in Ki− 1

2
and dying in Kj .

Theorem 3.10. Let

K0 ⊂ K1 ⊂ · · · ⊂ Km

be the Rips-filtration of a set of vertices V , moreover, let

K0 ⊂ K1 ⊂ · · · ⊂ Ki−1 ⊂ Ki− 1
2
⊂ Kĩ ⊂ · · · ⊂ Km

be the Rips* filtration of V and an edge e born in Ki. Then, the

number of homology classes in H i,j
1 (e) = µi,j

1 − µ
i− 1

2 ,j
1 .

Proof. See the previous lemma.

Now, suppose, that we have calculated all the homology classes of a data
set S with the help of a Rips-filtration. We pick the holes of dimension 1
defined by the persistence interval (ri, rj), there exist µi,j

1 of them and we
do not distinguish between them. We want to find an edge e with one of
the homology classes that we picked in H i,j

1 (e). So, we start by computing
the Rips*-filtration of S and an edge born in Ki. Most of the holes will
probably have the persistence interval (ri− 1

2
, rj), this means, that they are

not an element of H i,j
1 (e).Now, the holes with a persistence interval that has

not changed, are the interesting ones. Their representatives were born in Kĩ.
If we get such an interval, then we know, that e is responsible for one of the
holes defined by (ri, rj).

3.2 Some Graph theory

Before beginning to talk about shortest paths in simplicial complexes, we
repeat some important definitions and results from graph theory [2]
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Definition 3.11. A simple unweighted graph G is defined as a pair (V,E) =
(V (G), E(G)) = G of a set V and a subset E ⊂ V × V of the Cartesian
product V × V . The se V is called the set of vertices and also written as
V (G) = V . Let v1 and v2 be vertices. An element (v1, v2) of E is called edge
of the vertices v1 and v2. The set E of edges is also written as E(G) = E.

Remark 3.12. We can identify a simple graph G with a 1-skeleton (definition
2.17 K(i) of a simplicial complex K. Identify an edge (v1, v2) of G with an
edge [v1, v2] of K(i).

Definition 3.13. LetG = (V (G), E(G)) be a graph. A pair F = (V (F ), E(F ))
of subsets V (F ) ⊆ V (G) and E(F ) ⊆ E(G) is called a subraph of G.

It is very figurative to travel on edges from vertex to vertex:

Definition 3.14. Let G be a graph, v1 and v2 two of its vertices. A path in G
between vi and vj is a subgraph of G whose vertices v1 =: w1, w2, . . . , wn := v2

can be ordered in a sequence (w1, w2, . . . , wn) such that the only vertices
that share edges are neighbours in the sequence and vi and vj are at the very
edges of the sequence.

Remark 3.15. We can identify the path (w1, w2, . . . , wn) with the 1-chain
[w1, w2] + [w2, w3] + · · ·+ [wn−1, wn].

Definition 3.16. The length of a path p is the number of its edges.

Definition 3.17. A path is called a trail if every vertex except the first and
last one included in the sequence of vertices only appears once.

Definition 3.18. Let vi and vj be vertices of a simple unweighted graph G.
The shortest path between vi and vj is the path P ⊆ G whose set of edges
E(P ) is the smallest of all paths between vi and vj .

Remark 3.19. A shortest path is a trail.

Now we come to an important remark on the possibility of solving the
task of finding the shortest path between two vertices. We will see that this
task is always solvable:

Definition 3.20. Let G be a simple, unweighted graph, vi, vj ∈ G. The
single-pair shortest path problem for a simple, unweighted graph is the task
of finding the shortest path between vi and vj .
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Theorem 3.21. The single-pair shortest path problem for a simple, un-
weighted graph can be solved.

Proof. Dijkstra-algorithm

3.3 Finding the responsible simplices

Now, given a hole γ of dimension 1 defined by its persistence interval (ai, aj),
we can find an edge e that is summand of a representative cycle of γ. Given
e, we want to find a representative cycle for γ now.

In order to prepare for the main theorem of this chapter, we see now that
the existence of a shortest path between the faces of an edge e and a cycle
that contains e is somewhat equivalent:

Lemma 3.22. Let K0 ⊆ K1 ⊆ · · · ⊆ Km be a filtration of a monotonic
function. Moreover, let the two vertices v1 and v2 be elements of Ki (remark
2.73, definition 2.77) and let the edge e := [v1, v2] be born in Kj for 0 < i <

j ≤ m . Then there exists a shortest path between v2 and v1 in Ki iff e is a
summand of a cycle e+ c in Z1(Kj), where c is in C1(Ki).

Proof. Let us see one direction of the prooge, the other one is even easier.
Suppose, that there exists a shortest path s between v2 and v1 in C1(Ki)
(remark 3.15). First, we want to show that e + s is a cycle in Kj . Let
(v1 =: w1, w2, . . . , wk := v2) define s. As e = [wk, w1] is not an element in Ki

but s is a chain in Ki, we know that e and s are not equal. Now let us look
at the boundary of e+ s ∈ C1(Kj):

∂(e+ s)

= ∂[wk, w1] + ∂[w1, w2] + ∂[w2, w3] + · · ·+ ∂[wk−2, wk−1] + ∂[wk−1, wk]

= w1 − wk + w2 − w1 + w3 − w2 + · · ·+ wk−1 − wk−2 + wk − wk−1

= 0.

Therefore, there exists a cycle e+ s with e as a summand.

Theorem 3.23. Let K0 ⊆ K1 ⊆ · · · ⊆ Km be a Rips-filtration. Let the edge
e := [v1, v2] be born in Ki, i > 1 (remark 2.76). Let H i,k

1 (e) be nonempty
for some k ≥ i and let e not be summand of any homology class that is not
an element of H i,k

1 (e) for some k ≥ i. If there exists a shortest path s in
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C1(Ki−1) between v1 and v2, then, e + s is a representative for a hole in
H i,j(e) for some j ≥ i.

Proof. Because s lies in C1(Ki−1) and e is born in Ki and because of lemma
3.22, we know that e + s is a cycle. We want to show that e + s is a
representative cycle some element in some Hj,k(e). To do so, we first have
to show that e+ s is not trivial in H1(Ki).
Suppose that e+ s is trivial. Now, because some H i,j(e) is nonempty, there
exists a γ in H i,j(e) such that γ is of the form γ = e+ c for some c in C1(Ki).
Note that the boundary of e+ c is zero. We want to show now that c+ s = γ.
We know that

∂s = ∂(e+ s)− ∂(e) = vi − vj ,

and that

∂c = ∂(e+ c)− ∂e = vi − vj .

Therefore ∂(c+ s) = 2vi − 2vj = 0. Thus, c+ s is in Z1(Ki).

c+ s = c+ s+ e+ s = c+ e = γ.

But c+ s does not contain e as a summand, which means that γ is not an
element of any H i,k(e) for any k, contradiction to the fact that e is not a
summand of any representative of any homology class that is not an element
of some H i,k(e).
Therefore, we know that e+ s is not trivial. So, e+ s is a representative for
a hole in H i,j(e) for some j ≥ i.

Now, we can propose an algorithm that detects holes in many cases: Let
K0 ⊂ K1 ⊂ · · · ⊂ Km be a Rips-filtration. Given a persistence interval
(ri, rj), we want to find as many representative cycles for holes with this
persistence as we can. We can find all the edges e1, e2, . . . , ek, k ≤ µi,j

1 , whose
H i,j

1 (e) is not empty. This procedure is described in section 3.1. Then, for
every el, 1 ≤ k do the following: Compute the shortest path sj between the
faces of ej if possible. If ej is not summand of a homology class that is not
element of H i,j

1 (e), then ek + sk is a representative cycle for a hole defined
by (ri, rj).
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3.4 A field study with Javaplex

Javaplex is an open source software package provided by the University
of Stanford, it was built over the past ten years by the research group for
computational topology there. It serves to compute persistent homology. It
can be used on Java and Matlab, I chose to use it on Matlab. The research
group provides an extremely helpful tutorial[1].

In order to test the theories I proved, I created a program that creates a
random set of 10 points in the unit circle in R2. The probablility of getting
only one hole of dimension 1 before all the components are connected is
pretty high in this constricted setting. We see that the theory works in
this restricted setting. The (messily displayed) code can be found in the
appendix and the visual outcome, the plots of the small pointclouds and the
persistence barcodes can be observed in Figure 3.
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(a) A circle without a hole (b)

(c) A circle with a hole (d)

Figure 3: (a) shows a pointcloud that doesn’t produce any homology class
of a dimenion greater than zero. (b) shows the connected components. In
figure (c) some may be able to observe the cycle (6, 7, 8, 2, 10) representing a
homology class of dimension 2 which is shown in the barcodes in (d). This

cycle has been detected by my program.
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1 clc; clear; close all;

2 import edu.stanford.math.plex4.*;

3

4 % create the set of points

5 point_cloud = ...

examples.PointCloudExamples.getRandomSphereProductPoints(10, ...

1, 1)

6

7 % plot the points

8 scatter(point_cloud(:,1),point_cloud(:,2),'.')

9 % set the ratio of the chart

10 daspect([1 1 2])

11 % name the points

12 for K = 1 : length(point_cloud)

13 text(point_cloud(K,1) + 0.02, point_cloud(K,2) + 0.02, ...

string(K));

14 end

1 %% create a Vietoris-Rips stream

2 % max_dimension describes the maximum dimension of the ...

chain group, so we

3 % compute holes up to dimension n-1

4 max_dimension = 3;

5 % the maximum filtration value is the maximum length of ...

points to be

6 % connected in the Vietoris-Rips complex

7 max_filtration_value = 4;

8 % the number of divisions gives us an idea about how ...

exactly we are

9 % calculating

10 num_divisions = 10000;

11

12 % create the Vietoris-Rips stream

13 stream = api.Plex4.createVietorisRipsStream(point_cloud, ...

max_dimension, max_filtration_value, num_divisions);

14

15 %% get persistence algorithm over Z/2Z

16 persistence = ...

api.Plex4.getModularSimplicialAlgorithm(max_dimension, 3);

17 intervals = persistence.computeAnnotatedIntervals(stream)

18

19 %% plot the barcodes
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20 options.filename = 'barcodes';

21 options.max_filtration_value = 8;

22 plot_barcodes(intervals, options);

1 % check whether there is a hole of dim 1

2 intervals_dim1 = ...

edu.stanford.math.plex4.homology.barcodes.BarcodeUtility.getEndpoints(intervals, ...

1, 0)

3 if length(intervals_dim1) > 0

4 % if there is one, start to search for the constructing ...

points

5 % get the radius where the hole appears

6 dist = intervals_dim1(1)

7

8 % calculate the distance matrix

9 distArray = pdist(point_cloud)

10 distMat = squareform(distArray)

11

12 % we can delete all distances bigger than the distance ...

where the hole

13 % appears, this gives us all the connected points ...

before the hole

14 % closes

15 matBeforeHole = distMat.*(distMat<dist)

16

17 % plot the graph of all connected points before the ...

hole appears

18 lenPoints = length(point_cloud)

19 names = arrayfun(@string, 1:lenPoints)

20 celldata = cellstr(names)

21 graphBeforeHole = graph(matBeforeHole,celldata)

22

23 % iterate through all entries of the distance matrix

24 for i = 1:lenPoints

25 for j = i+1:lenPoints

26 el = distMat(j,i)

27

28 % check whether the entry is close enough to ...

our selected

29 % distance (as we can only approximate the ...

Betti intervals we

30 % have to accept approximate values)

31 if abs(el-dist)<0.001
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32 % delete one of the points with distance el

33 new_cloud = point_cloud

34 new_cloud(i,:) = []

35

36 % create the Vietoris-Rips for the ...

pointcloud with that one

37 % point extracted

38 stream = ...

api.Plex4.createVietorisRipsStream(new_cloud, ...

max_dimension, max_filtration_value, ...

num_divisions);

39

40 % create the persistence interval for the ...

new set of points

41 persistence = ...

api.Plex4.getModularSimplicialAlgorithm(max_dimension, ...

2)

42 intervals = ...

persistence.computeIntervals(stream)

43 % get the holes of dimension one for the ...

new stream

44 intervals_dim1 = ...

edu.stanford.math.plex4.homology.barcodes.BarcodeUtility.getEndpoints(intervals, ...

1, 0)

45

46 %% check whether the new Vietoris-Rips ...

stream gives the

47 %% same holes at the same distance

48 % check whether the hole of dimension one ...

still exists

49 if length(intervals_dim1) > 0

50 % now we look at the new radius at ...

which the hole of

51 % dimension one appears

52 newDist = intervals_dim1(1)

53

54 % check whether the hole appears at the ...

same distance,

55 % if not, the points we're looking at ...

are essential for

56 % the hole

57 if newDist 6= dist

58 % compute the shortest path between ...

the two points
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59 % we identified to be essential to ...

the hole, that

60 % gives us the rest of the points ...

that creat the

61 % hole

62 pointsOfHole = ...

shortestpath(graphBeforeHole,i,j)

63

64 end

65 % in the case that the new persistence ...

interval differs

66 % significantly from the original one, ...

we don't compute

67 % anything and continue iterating in ...

the hope of

68 % finding significant points

69 else

70 % if there is no hole of dim 1, this ...

also means that

71 % the points are essential and we ...

create the shortest

72 % path

73 pointsOfHole = ...

shortestpath(graphBeforeHole,i,j)

74 display(pointsOfHole)

75 end

76

77 end

78

79 end

80 end

81 % those points create the hole

82 display(pointsOfHole)

83

84 else

85 % in the case that the persistence doesn't give us a ...

hole of dimension

86 % one, we want the function to communicate that

87 display('There is no hole of dimension 1')

88 end
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